Role of Software Metrics to Improve Software Quality

Vikash Chauhan

M.Tech Scholar Deptt. of Computer Science & Engg. KNIT Sultanpur, UP, India Dharmendra Lal Gupta Assistant Professor Deptt. of Computer Science & Engg. KNIT Sultanpur, UP, India Member IEEE

Sarvottam Dixit

Professor Mewar University, Chittorgarh Rajasthan, India

Abstract—This paper describes software metrics and provides the relevant matters about the need of software metrics in software development, the basic quality attributes of software metrics and how can we improve the quality of software using software metrics is also mentioned. Quality in fact aids easy and high productivity, which has brought software metrics to the forefront. Currently software metrics are being used by software companies to improve the quality of software so that they can improve their productivity and make profit. This paper also describes the role of software metrics in software engineering.

Keywords-Software metrics; software metrics component; software quality factors.

I. INTRODUCTION

"You cannot control what you cannot measure" - Tom DeMarco. This statement justifies like that in real life Thermometer requires to measure the temperature of body and Scale requires to measure the length of table, so in this way software quality can also be measured in terms of metrics. Measurement of project or software is very important because without measuring the quality we can't achieve the goal of software. By measuring we can control and improve the performance of our project or software. Correct measurement is also very important because we have to find only that factors which improve the quality of our project. According to our problem we should select the quality factors and using these factors, we should select the software quality metrics. Software quality metrics are dependent on software quality factors so selection of quality factors is very important.

If one does not have any information about where he/she is now certainly won't know where he/she will be in the future. In 2004, the Standish Chaos report found only 29% project met their quality criteria for success of project and this report also told that cancelled cost of that projects were near about \$55 billion, so if we will use the proper metrics in developing of software then we can increase the quality and can decrease the probability of failure of projects.

II. SOFTWARE QUALITY FACTORS

Some important software quality factors have been shown in table I which is mentioned in alphabetically order.

Quality Factors	Detail Description
Accuracy	It is the extent to which the output of a
	program is sufficiently precise their
	intended use [2] [3] [4].
Analyzability	Attributes of software that relate to the
	effort needed for diagnosis of
	deficiencies or causes of failures, or
	for identification of parts to be
	modified.
Adaptability	Attributes of software that relate to on
	the opportunity for its adaptation to
	different specified environments
	without applying other actions or
	means than those provided for this
	purpose for the software considered.
Clarity	It measures how clearly a person can
-	understand a program. Clarity is the
	extent to which a program has enough
	information for a reader to find its
	objectives, assumptions, constraints,
	inputs and outputs [2] [3] [6].
Completeness	It is the extent to which our software
-	fulfills the overall mission
	requirements. It covers a broad area
	[2] [3] [6].
Complexity	Complexity seen as a criterion, which
	is a level of attribute that falls
	somewhere between the measureable
	software metrics and quality factors
	[6].
Conciseness	It is the ability of a program to satisfy
	functional requirements using a
	minimum amount of software [3] [6].
Consistency	It can be divided into two groups:
-	internal and external. Internal is the
	degree to which software satisfies
	specifications and external is to which
	a software product contains uniform
	notation, symbols and terminology [3]
Correctness	It measures the extent to which the
	software design and implementation
	confirm to specifications and
	standards [6].
Compliance	Attributes of software that make the

TABLE I. Software quality factors with their details

Quality Factors	Detail Description	Quality Factors	Detail Description
	software adhere to application related	Operability	Attributes of software that relate to the
	standards or conventions or		users' effort for operation and
<u></u>	regulations in laws.	D.C.	operation control.
Changeability	It is relate to the effort needed for	Performance	How well will the product perform
	anyironmental change	Dortability	How assily a software product will
~ ^		Tortaonity	run on a computer configuration other
Conformance	It is set of attribute that make the		than the current one (Boehm et al.
	software adhere to standards or		1978).
	conventions relating to portability.	Reliability	Reliability is the extent to which a
Efficiency	The ratio of useful work performed to		program can be expected to perform
	the total energy expended (Gilb 1977).		its intended functions satisfactorily
Expandability	It is associated with making changes	Reusability	[1]. It is the effort needed to convert
	to a program. It is the amount of effort	Reusability	software for another use (Bowen
	performance of software [6].		Wigle, and Tsai 1985).
Flexibility	It is defined as the amount of effort	Recoverability	Recoverability relates to the capability
	required to change the mission,		to re-establish its level of performance
	function, or data of software to satisfy		and recover the data directly affected
	other requirements. This is broad		in case of a failure.
	modifiability [6]	Resource	It relate to the amount of resources
Functionality	It is the set of attributes that relate to	Behaviour	used and the duration of such use in
T unetronancy	the existence of a set of functions and	Danlaggability	Performing its function.
	their specified properties. The	Replaceability	opportunity and effort of using it in
	functions are those that satisfy stated		the place of specified other software in
	or implied needs.		the environment of that software.
Fault tolerance	It is the set of attributes of software that relate to its ability to maintain a	Simplicity	Simplicity is the extent that it uses
	specified level of performance in cases		data and control structures for
	of software faults.		organizing the program, and uses
Turta anita.	Integrity is the management of the shility	Suitability	easily understood constructors [1].
Integrity	of a program to perform correctly on	Suitability	appropriateness of a set of functions
	different sets of input (Kreitzberg		for specified tasks.
	1982). It is measure of how well a	Security	Security is the ability to prevent
	program has been tested [5].		unauthorized access, whether
Installability	Installability is the effort needed to		accidental or deliberate, to programs
	install the software in a specified	Stability	and data.
		Stability	unexpected effect of modifications
Interoperability	It is the set of attributes of software	Survivability	Survivability is the extent to which the
	that relate to its ability to interact with		software performs and support critical
Learnability	Learnability is the users' effort for		function without failure within a
20011001109	learning its application (for example,		specific time period.
	operation control, input, and output).	Testability	Testability is the extent to which the
Maintainahilita	It is the measure of the offert and time		of acceptance criteria and supports
Maintainaointy	required to fix bugs in the program		evaluation of its performance
	(McCall, Richards, and Walters 1977).		(Boehm1978). Testability is the
Modifiability	It measures the cost of changing or		measure of our ability to test software
	extending a program (McCall 1977).		(McCall).
Modularity	Modularity is the expressed in terms	Time behaviour	It relate to response and processing
	of program subunits that are		performing its function
	ueveloped in dependently and then interfaced (Baker 1979)	Understandability	Understandability is the ease with
Maturity	Maturity is the frequency of failure by		which a program can be understood
1. Internet y	faults in the software.		(McCall 1977). It can be viewed as the
L		1	extent to which the purpose of the

Quality Factors	Detail Description			
	product is clear (Boehm et al. 1978).			
Usability	Usability measures the effort required			
	to train a person to use the software			
	(Bowen, Wigle, and Tsai 1985).			
Verifiability	Verify the specified software			
-	operation and performance.			

These above properties decide the quality of software. According to these properties we select the proper software metrics to apply in our software.

III. SOFTWARE METRICS AND SOFTWARE QUALITY METRICS

A. SOFTWARE METRICS

Today size of project is increasing and it is very hard to maintain the quality of project so software metrics have to be required in software industries. Basically there are following three types of software metrics: process metrics, project metrics and product metrics [8] [9].

1) Process Metrics:

Process metrics show the development process of the software. These are collected across the entire project and over long periods of time. These metrics are used in strategic decision. In process metrics we measure the effectiveness of a process by deriving a set of metrics based on outcomes of the process such as:

- Conformance to the schedule
- Delivered work products
- End users report the defects
- Errors not fixed before release of the software
- Expended calendar time
- Expended human effort
- Time and effort to complete each generic activity

2) Project Metrics:

Project metrics are useful to monitor the project situation and status. It minimize the development schedule of the project, improve quality, minimize defects, amount of rework of project reduce, overall project cost is reduced. Project metrics enable a software project manager to

- Maintain work flow or tasks of project
- Assess the status of the current project
- Evaluate project team's ability to control quality of software work products
- Track potential risks of project
- Uncover problem areas before their status becomes critical

3) Product Metrics:

Product metrics provide the solution to understand the attribute of the software product and quality at any phase (analysis, design, coding, and testing) of its development. It can also measure

- Complexity of the software design, procedural designs and source code
- Maintainability
- Performance
- Portability
- Product scale
- Size of program
- Testing techniques

B. SOFTWARE QUALITY METRICS

Software metrics and software quality factors compose the software quality metrics. These metrics provide measures of the software attributes and may be in the form of checklists used to grade a document produced during the development.

Software Quality Metrics (SQM) = Software Metrics (SM) + Software Quality Factor (SQF)

Relationships between the set of metrics related to quality attributes (factors) and rating of quality factors have been established via regression analysis performed on empirical data. This relationship can be shown via linear equation. An example is given below.

$$r_f = c_1 m_1 + c_2 m_2 + c_3 m_3 + \dots + c_i m_i$$

where:

 $r_f = rating \ of \ the \ quality \ factor, f$

- $c_i = regression \ cofficients$
- $m_i = various measurements identified as$ relating to quality factor, f [7]

By creating the above relationship it is used as predictor. The measurements m_i are applied at specific times during the development. There are following aspects of this approach.

- At highest level it is user-oriented
- At lower level oriented it is software-oriented
- Provide attributes' qualifications
- It is easy to use and can be applied any time during the software development
- Additional metrics, function, and criteria can be added as the software technology changes [7]

IV. DISCUSSION, CONCLUSION AND FUTURE WORK

In this paper we described the quality attributes of software by which we can improve the performance of software. We have presented software metrics that are used according to our problem. We have described here that the differences between software metrics and software quality metrics. First of all we have to select quality attributes that are used in our project or software after that we have to select software metrics suite and lastly according to our priority we have to select one of the metrics and apply it in our project. There may be different combinations of quality attributes to make many different metrics. These metrics have different properties. We have many metrics at the present time so we have to choose very carefully according to our need. It is not necessary that we should use only one metrics in whole project, we should use such metrics that provide better and efficient result. Software engineering provides us many rules and regulations to select the appropriate metrics.

In this area of research work there are a lot of queries, and their solutions which may be found in our future work. These queries may be as given below:

- 1. What are the bases to relate these quality attributes?
- 2. If we change one attribute, what will be the effect on another attributes?
- 3. How we identify which software quality metric is more important than other software quality metrics and why?

REFERENCES

- McCall, Jim A., Paul K. Richards, and Gene F. Walters, "Factors in Software Quality", RADC-TR-77-369, Volumes I, II, and III, RADC, Griffiss Air Force Base, NY, November 1977.
- [2] Gilb, T., "Software Metrics", Winthrop, Inc., Cambridge, MA, 1977.
- [3] Boehm, B. W. et al., "Characteristics of Software Quality", North-Holland Publishing Company, New York, NY, 1978.
- [4] Walters, G. F., "Applications of Metrics to a Software Quality Management (QM) Program", Software Quality Management, Petro celli, New York, NY, 1979.
- [5] Kreitzberg, Charles B. and Ben Shneiderman, FORTRAN Programming: A Spiral Approach, Harcourt Brace Jovanovich, Inc., 1982.
- [6] Bowen, Thomas P., Gary B. Wigle, and Jay T. Tsai, "Specification of Software Quality Attributes", RADC-TR-85-37, RADC, Griffiss Air Force Base, NY, Volumes I, II, and III, February 1985.
- [7] Joseph P. Cavano Rome Air Development Center, James A. McCall General Electric Company. "A Framework for the Measurement of Software Quality".
- [8] Tu Hongleil, Sun Weil, Zhang Yanan1, "The esearch on Software Metrics and Software Complexity Metrics", International Forum on Computer Science-Technology and Applications, 2009.
- [9] Mrinal Singh Rawat, Arpita Mittal, and Sanjay Kumar Dubey "Survey on impact of software metrics on software quality", IJACSA Vol 3, No. 1, 2012.